공학,기술 업로드 수치해석 – 이분법, 뉴턴법, 할선법 (c++ 프로그램소스 있음) (c언어) 등록
[목차]
1. 이론
`이분법`
이분법 (bisection 또는 binary-search method) 은 f(x)〓0을 만족하는 단일 변수 방정식의 근을 구하는 수치해석 기법이다. 일반적으로 고차 대수 방정식(polynomial)이나 초월 함수 방정식 (삼각함수) 의 근을 구하는 문제에 적용할 수 있다.
중간값의 정리에 의해 구간 [a , b]에서 연속함수 f(x)가 f(a)f(b) ` 0 이면 이 구간 안에 적어도
하나 이상의 근이 존재한다는 원리를 이용한다.
Xsol 〓 a1 +
〓
★ 이분법의 특징
– 반드시 해가 존재한다. (함수의 연속성이 요구되지 않는다.)
– 계산 횟수 평가가 용이하다.
– 계산 구간을 미리 설정해야 한다. (수렴속도가 느리다.)
`뉴톤법`
뉴턴법(Newton method) 또는 뉴턴-랩슨법(Newton-Raphson method) 으로 불리는 이 방법은 f(x)〓0 을 만족하는 x값을 구하는 단일 변수 방정식의 수치적 해법 중 하나이다.
뉴턴법은 어떤 지점 (xn, yn)이 주어졌을 때, 이 점을 지나는 f(x)의 접선과 x축과의 교점을 (xn+1, 0)이라고 하면, xn+1 이 xn에 비해 근 x에 더 가까워 지는 기하학적 특성을 이용하는 방법이다.
뉴턴법은 수렴 속도가 단일 변수 방정식의 해법 중 가장 빠르지만, 해에 수렴하지 않거나, 엉뚱한 해에 수렴할 가능성이 있다. 또, f(x)의 도함수를 구하기 곤란한 경우에는 적용하기 어렵다.
x1 〓 x0 –
★ 뉴톤법의 특징
– 수렴속도가 빠르다.
– 계산구간을 설정할 필요가 없다.
– 도함수가 존재해야 하므로 함수의 연속성이 요구된다.
– 초기값, x0의 설정이 수렴해를 얻는데 중요한 요소이다.
`할선법`
f(x)〓0을 만족하는 단일 변수 방정식의 해를 구하는 수치해석 기법이다.
할선법은 가위치법과 마찬가지로 두 점을 잇는 직선과 x축과의 교점이 해와 가깝다는 특성을 이용한다. 즉, 기본적으로 가위치법과 유사하다. 그러나 두 점을 선택하는 방법에서 가위치법과 차이가 있다.
할선법은 수렴이 빠르지만, 정해에 수렴하지 않을 수도 있다.
x2 〓 x1 –
★ 할선법의 특징
– Nweton 법과 유사하나 계산효율은 더 높다.
– 도함수가 필요하지 않다.
– 계산구간을 미리 설정할 필요가 없다. (가위치법과 다른 점)
2. 수행 계획
이분법, 뉴턴법, 할선법을 이용한 수치해석 프로그래밍을 하기…(생략)
[문서정보]
- 문서분량 : 7 Page
- 문서종류 : HWP 문서
- 파일크기 : 227Kb
- 태그(#) : #공학 #기술 #수치해석 #이분법 #뉴턴법 #할선법 #c++ #프로그램소스 #있음 #c언어
- 자료No(pk) : 11082818